Popeye is a utility that scans live Kubernetes cluster and reports potential issues with deployed resources and configurations. It sanitizes your cluster based on what’s deployed and not what’s sitting on disk. By scanning your cluster, it detects misconfigurations and helps you to ensure that best practices are in place, thus preventing future headaches. It aims at reducing the cognitive overload one faces when operating a Kubernetes cluster in the wild. Furthermore, if your cluster employs a metric-server, it reports potential resources over/under allocations and attempts to warn you should your cluster run out of capacity.
Popeye is a readonly tool, it does not alter any of your Kubernetes resources in any way!
Installation
Popeye is available on Linux, OSX and Windows platforms.
Binaries for Linux, Windows and Mac are available as tarballs in the release page.
For OSX/Unit using Homebrew/LinuxBrew
brew install derailed/popeye/popeye
Building from source Popeye was built using go 1.12+. In order to build Popeye from source you must:
Clone the repo
Add the following command in your go.mod file
replace (
github.com/derailed/popeye => MY_POPEYE_CLONED_GIT_REPO
)Build and run the executable
go run main.go
Quick recipe for the impatient:
# Clone outside of GOPATH
git clone https://github.com/derailed/popeye
cd popeye
# Build and install
go install
# Run
popeye
PreFlight Checks
Popeye uses 256 colors terminal mode. On `Nix system make sure TERM is set accordingly.
export TERM=xterm-256color
Sanitizers
Popeye scans your cluster for best practices and potential issues. Currently, Popeye only looks at nodes, namespaces, pods and services. More will come soon! We are hoping Kubernetes friends will pitch’in to make Popeye even better.
The aim of the sanitizers is to pick up on misconfigurations, i.e. things like port mismatches, dead or unused resources, metrics utilization, probes, container images, RBAC rules, naked resources, etc…
Popeye is not another static analysis tool. It runs and inspect Kubernetes resources on live clusters and sanitize resources as they are in the wild!
Here is a list of some of the available sanitizers:
Resource | Sanitizers | Aliases | |
---|---|---|---|
Node | no | ||
Conditions ie not ready, out of mem/disk, network, pids, etc | |||
Pod tolerations referencing node taints | |||
CPU/MEM utilization metrics, trips if over limits (default 80% CPU/MEM) | |||
Namespace | ns | ||
Inactive | |||
Dead namespaces | |||
Pod | po | ||
Pod status | |||
Containers statuses | |||
ServiceAccount presence | |||
CPU/MEM on containers over a set CPU/MEM limit (default 80% CPU/MEM) | |||
Container image with no tags | |||
Container image using latest tag | |||
Resources request/limits presence | |||
Probes liveness/readiness presence | |||
Named ports and their references | |||
Service | svc | ||
Endpoints presence | |||
Matching pods labels | |||
Named ports and their references | |||
ServiceAccount | sa | ||
Unused, detects potentially unused SAs | |||
Secrets | sec | ||
Unused, detects potentially unused secrets or associated keys | |||
ConfigMap | cm | ||
Unused, detects potentially unused cm or associated keys | |||
Deployment | dp, deploy | ||
Unused, pod template validation, resource utilization | |||
StatefulSet | sts | ||
Unsed, pod template validation, resource utilization | |||
DaemonSet | ds | ||
Unsed, pod template validation, resource utilization | |||
PersistentVolume | pv | ||
Unused, check volume bound or volume error | |||
PersistentVolumeClaim | pvc | ||
Unused, check bounded or volume mount error | |||
HorizontalPodAutoscaler | hpa | ||
Unused, Utilization, Max burst checks | |||
PodDisruptionBudget | |||
Unused, Check minAvailable configuration | pdb | ||
ClusterRole | |||
Unused | cr | ||
ClusterRoleBinding | |||
Unused | crb | ||
Role | |||
Unused | ro | ||
RoleBinding | |||
Unused | rb | ||
Ingress | |||
Valid | ing | ||
NetworkPolicy | |||
Valid | np | ||
PodSecurityPolicy | |||
Valid | psp |
You can also see the full list of codes
Save the report
To save the Popeye report to a file pass the --save
flag to the command. By default it will create a temp directory and will store the report there, the path of the temp directory will be printed out on STDOUT. If you have the need to specify the output directory for the report, you can use the environment variable POPEYE_REPORT_DIR
. By default, the name of the output file follow the following format : sanitizer_<cluster-name>_<time-UnixNano>.<output-extension>
(e.g. : “sanitizer-mycluster-1594019782530851873.html”). If you have the need to specify the output file name for the report, you can pass the --output-file
flag with the filename you want as parameter.
Example to save report in working directory:
$ POPEYE_REPORT_DIR=$(pwd) popeye --save
Example to save report in working directory in HTML format under the name “report.html” :
$ POPEYE_REPORT_DIR=$(pwd) popeye --save --out html --output-file report.html
Save the report to S3
You can also save the generated report to an AWS S3 bucket (or another S3 compatible Object Storage) with providing the flag --s3-bucket
. As parameter you need to provide the name of the S3 bucket where you want to store the report. To save the report in a bucket subdirectory provide the bucket parameter as bucket/path/to/report
.
Underlying the AWS Go lib is used which is handling the credential loading. For more information check out the official documentation.
Example to save report to S3:
popeye --s3-bucket=NAME-OF-YOUR-S3-BUCKET/OPTIONAL/SUBDIRECTORY --out=json
If AWS sS3 is not your bag, you can further define an S3 compatible storage (OVHcloud Object Storage, Minio, Google cloud storage, etc…) using s3-endpoint and s3-region as so:
popeye --s3-bucket=NAME-OF-YOUR-S3-BUCKET/OPTIONAL/SUBDIRECTORY --s3-region YOUR-REGION --s3-endpoint URL-OF-THE-ENDPOINT
Run public Docker image locally
You don’t have to build and/or install the binary to run popeye: you can just run it directly from the official docker repo on DockerHub. The default command when you run the docker container is popeye
, so you just need to pass whatever cli args are normally passed to popeye. To access your clusters, map your local kube config directory into the container with -v
:
docker run --rm -it \
-v $HOME/.kube:/root/.kube \
derailed/popeye --context foo -n bar
Running the above docker command with --rm
means that the container gets deleted when popeye exits. When you use --save
, it will write it to /tmp in the container and then delete the container when popeye exits, which means you lose the output. To get around this, map /tmp to the container’s /tmp. NOTE: You can override the default output directory location by setting POPEYE_REPORT_DIR
env variable.
<div class="highlight highlight-source-shell notranslate position-relative overflow-auto" data-snippet-clipboard-copy-content=" docker run –rm -it \ -v $HOME/.kube:/root/.kube \ -e POPEYE_REPORT_DIR=/tmp/popeye \ -v /tmp:/tmp \ derailed/popeye –context foo -n bar –save –output-file my_report.txt # Docker has exited, and the container has been deleted, but the file # is in your /tmp directory because you mapped it into the container $ cat /tmp/popeye/my_report.txt ” dir=”auto”>
docker run --rm -it \
-v $HOME/.kube:/root/.kube \
-e POPEYE_REPORT_DIR=/tmp/popeye \
-v /tmp:/tmp \
derailed/popeye --context foo -n bar --save --output-file my_report.txt# Docker has exited, and the container has been deleted, but the file
# is in your /tmp directory because you mapped it into the container
$ cat /tmp/popeye/my_report.txt
<snip>